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ABSTRACT
COVID-19 is a worldwide health crisis seriously endangering the arsenal of antiviral and antibiotic
drugs. It is urgent to find an effective antiviral drug against pandemic caused by the severe acute
respiratory syndrome (Sars-Cov-2), which increases global health concerns. As it can be expensive and
time-consuming to develop specific antiviral drugs, reuse of FDA-approved drugs that provide an
opportunity to rapidly distribute effective therapeutics can allow to provide treatments with known
preclinical, pharmacokinetic, pharmacodynamic and toxicity profiles that can quickly enter in clinical
trials. In this study, using the structural information of molecules and proteins, a list of repurposed
drug candidates was prepared again with the graph neural network-based GEFA model. The data set
from the public databases DrugBank and PubChem were used for analysis. Using the Tanimoto/jaccard
similarity analysis, a list of similar drugs was prepared by comparing the drugs used in the treatment
of COVID-19 with the drugs used in the treatment of other diseases. The resultant drugs were com-
pared with the drugs used in lung cancer and repurposed drugs were obtained again by calculating
the binding strength between a drug and a target. The kinase inhibitors (erlotinib, lapatinib, vandeta-
nib, pazopanib, cediranib, dasatinib, linifanib and tozasertib) obtained from the study can be used as
an alternative for the treatment of COVID-19, as a combination of blocking agents (gefitinib, osimerti-
nib, fedratinib, baricitinib, imatinib, sunitinib and ponatinib) such as ABL2, ABL1, EGFR, AAK1, FLT3 and
JAK1, or antiviral therapies (ribavirin, ritonavir-lopinavir and remdesivir).
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1. Introduction

The new coronavirus infection, which was first reported in
the Wuhan city of China in November 2019, has spread rap-
idly across the world within a few months and greatly
affected many countries

. This virus, called as COVID-19, was denominated as Sars-
Cov-2 by the Committee on Nomenclature of Viruses (Wu
et al., 2020). This virus, which is believed to be transmitted
from the bat through pangolin and belongs to beta corona-
viruses, can spread among people in different environments.
Sars-Cov (Simmons et al., 2004) and Mers-Cov (The WHO
MERS-CoV Research Group, 2013) (a beta-coronavirus), which
are similar to the Sars-Cov-2 virus, are thought to cause
unprecedented health, economic and social repercussions.
The World Health Organization (WHO) declared it as a pan-
demic on 11 March 2020 (Alhudhaif et al., 2021; Polat et al.,
2021). The pandemic has developed dramatically, upon
reporting of laboratory-confirmed cases of Sars-Cov-2 by
more than 180 countries in the world. In coronavirus, which
is divided into four sub-branches as alpha-, beta-, gamma-
and delta-coronaviruses, the genome size ranges between
26 kb and 32 kb. Alpha and beta coronaviruses originate
from mammals (especially bats), while gamma and delta
viruses originate from pigs and birds. While beta-

coronaviruses can cause severe illnesses and death, alpha-
coronaviruses cause asymptomatic or mild symptomatic
infections (Velavan & Meyer, 2020). In Sars-Cov-2, which con-
sists of 16 nsp (nonstructural proteins) and has a single
standþ RNA (Chan et al., 2020), proteins are responsible for
different cellular functions ranging from self-replicating,
infection, and host immune invasion. The rapid spread of the
COVID-19 epidemic, the increasing number of cases and
death rate, inadequate treatment methods and vaccine
options have prompted many governments to take strict
measures such as quarantine and travel to combat the pan-
demic (Karaman et al., 2021). All these results are crucial in
determining effective treatment options to prevent the Sars-
Cov-2 virus. Drug design and development is an important
area of research for pharmaceutical companies and chemical
scientists. However, low efficacy, off-target delivery, time con-
sumption and high cost present obstacles and challenges
affecting drug design and discovery. In addition, complex
and large data obtained from genomics, proteomics, micro-
array data and clinical trials also pose an obstacle in the
drug discovery line. Artificial intelligence and machine learn-
ing technology play a crucial role in drug discovery and
development (Gupta et al., 2021). Recent advances in
Experimental High Efficiency technologies have expanded
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the availability and quantity of molecular data in biology.
Considering the importance of interactions in biological proc-
esses, such as interactions between proteins or bonds within
a chemical compound, these data are often represented in
the form of a biological network. The increase of this data
created the need for new computational tools to analyze
networks. One of the biggest trends in the field is to use
deep learning for this purpose and more specifically to use
methods that work with networks called as Graph Neural
Networks (GNNs) (Muzio et al., 2021) COVID-19 causes symp-
toms such as acute respiratory disorder, fever, cough, sore
throat, muscle pain and shortness of breath (Karaman, 2021).
Previous studies repositioned many existing drugs to effect-
ively treat infectious diseases caused by single-strand RNA
viruses, such as Sars-Cov and Mers-Cov, which cause severe
respiratory symptoms. Approaches on prediction of Drug-
Target Interactions(DTI), a critical part of drug discovery in
pharmaceutical researches for repositioning, predict drug-tar-
get interactions based on the similarity between ligands of
target proteins (Keiser et al., 2009). While docking-based
methods use 3D structure information of a target protein,
Ligand and docking methods then run simulations to predict
the likelihood of interacting with a particular drug based on
binding affinity and strength (Cheng et al., 2007).

In recent years, several approaches have endeavored to
exploit drug-drug and protein similarities with drug chemical
structure and protein sequence and are based on the
assumption of association in cases where similar drugs can
share similar goals and vice versa. In this context, that pre-
dicts interactions for new drug or target candidates,
NetLapRLS, which is a semi-supervised learning method (Xia
et al., 2010), Gaussian interaction profile (GIP) kernel-based
approach (van Laarhoven et al., 2011), and collaborative
matrix factorization (MSCMF) (Zheng et al., 2013) drug-target
interactions are methods suggested for predicting drug-tar-
get interactions. Some approaches present in the random
walk with restart algorithm to predict drug-drug and protein-
protein similarities and interactions (Chen et al., 2012). Drug-
drug similarity studies aim to find drugs that exhibit similar
pharmacological properties to the drug of interest and are
guided by the hypothesis that similar drugs should be similar
in terms of action mechanism. The drug-drug similarity,
which has extensive application in various fields such as
drug repositioning (Bibi et al., 2021), drug-drug interaction
prediction (Ferdousi et al., 2017), drug target identification
(Campillos et al., 2008), and drug side-effects prediction
(Lounkine et al., 2012), can be calculated from different sour-
ces. Several calculations based on drug properties such as
chemical structure characteristics (Zhang et al., 2014), gene
expression profiles (Cha et al., 2014), side effect profiles
(Tatonetti et al., 2012), and biological target (Sawada et al.,
2015) have been applied to drug-drug similarity analytics. It
has been assumed that similar drugs may have almost similar
interactions and a neighbor recommendation method using
molecular structure similarity analysis (Vilar et al., 2012), a
computational framework for extracting drug interactions
and related recommendations (Gottlieb et al., 2012), a het-
erogeneous Network-Assisted Inference (HNAI) framework

(Cheng & Zhao, 2014) are other studies on drug-drug interac-
tions. The search for the interaction between DNA-binding
proteins (DBPs) that play a vital role in cell life activities such
as DNA replication and RNA transcription and drugs has
been an essential part of genomic drug discovery. Recently,
there are studies on protein-drug interactions. In this context,
network-based inference (NBI) (Cheng et al., 2012) and simi-
larity indices (Lu et al., 2017) are suggested methods for pre-
dicting drug-target interactions. There are also studies
suggesting integrates different ligand-based drug design
strategies of some in-house chemicals (Amin et al., 2021).

Many approved kinase inhibitors with pharmacological
effects that may be beneficial in recovering the life-threaten-
ing symptoms of COVID-19 have been suggested as import-
ant mediators of Sars-Cov and Mers-Cov in particular. Ideally,
a kinase inhibitor with optimal pharmacokinetic properties
can reduce infection directly through viral targeting. Kinase
inhibitors can be reused as a bifunctional therapeutic that
can provide clinical benefit by suppressing disease symp-
toms. Kinase inhibitors have properties such as anti-inflam-
matory and cytokine inhibitory activity that can reduce the
likelihood of life-threatening conditions due to lung injury.
For example, Osimertinib is a strong Epidermal Growth
Factor Receptor (EGFR) inhibitor. Osimertinib is one of 24 the
U.S. Food and Drug Administration (FDA) approved drugs
showing in vitro activity against Sars-Cov-2.

The re-use of previously FDA-approved drugs as treat-
ments for Sars-Cov-2 and related coronaviruses offers an
opportunity for rapid distribution of effective therapeutics in
the current pandemic environment where treatment options
are largely limited. For this purpose, a combined data set
from Mers-Cov, Sars-Cov and Sars-Cov-2 was used in this
study. The drug data sets used in the study were obtained
from PubChem (National Center for Biotechnology
Information, 2021) and DrugBank (DrugBank Online, 2021).
This combined data set was compared with the FDA-
approved data set and the drug-drug similarity analysis was
performed. This process was carried out using Tanimoto/
Jaccard similarity analysis. The drugs obtained were com-
pared with the drugs used in lung cancer, and the drugs
were analyzed using the atom pair similarity method. These
determined drugs are drugs which were previously used in
the Sars-Cov virus and are still effective in kinase inhibitors
and candidates to be effective. Drugs obtained by selecting
various kinase inhibitors were investigated in terms of Drug-
Protein Affinity Analysis using the Graph Neural Network-
Based(GNN) Graph Early Fusion Affinity (GEFA) (Nguyen et al.,
2021) model, consisting of four different experimental set-
tings and using Davis dataset. The molecular characteristics
that contribute to the most effective antibody response for
COVID-19 caused by the Sars-Cov-2 virus are still unclear.
The results obtained in this study can make it easier to help
fight against the pandemic as quickly as possible during the
pandemic crisis, in which the need and the urgency of time
are essential for using repurposed drugs for the COVID-
19 virus.

The second section of this study mentions about the
methods used in the study, the third section mentions about
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experimental results, and the fourth section mentions
about results.

2. Material and method

The molecular (chemical) similarity has an important role in
predicting the properties of chemical compounds, designing
chemicals with predefined properties and especially conduct-
ing drug discovery studies. It is usually created by scanning
extensive indexes that contain the structures of existing or
potentially existing chemicals. At this stage, drug-drug simi-
larity algorithms will then analyze drug-protein affinity states
of drugs with high similarity.

2.1. Dataset

The drug in the data set and the drug structure used in the
study were used as Simplified Molecular-Input Line-Entry
System (SMILES). SMILES is a sequence representation of the
2D structure of the molecule. It matches any molecule (usually)
to a unique particular string that matches back to the 2D struc-
ture. Sometimes, different molecules may be matched to the
exact SMILES string, which can degrade the model’s perform-
ance. In this study, the dataset obtained from the public data-
bases DrugBank and PubChem was used to determine the
similarities of selected FDA-approved drugs with COVID-19
and lung cancer drugs and analyze the affinity binding of
these drugs. The DrugBank database combines detailed drug
data with comprehensive drug target information. This data-
base is a source for bioinformatics and chemical informatics.
DrugBank Online contains 14.556 drug entries. Of these, 131
are nutraceuticals, 2.698 are approved small molecule drugs,
1.473 are approved biologics (proteins, peptides, vaccines and
allergens), and more than 6.653 experimental drugs. PubChem
is the knowledge base of chemical molecules. Structure and
descriptive information of millions of compounds can be
accessed here. The system is operated by the National Center
for Biotechnology. This center is agency of the National Library
of Medicine affiliated with the U.S. Department of Health.
PubChem has 110.025.926 chemical structures and 96.561 pro-
tein targets. It also has 32.816.125 scientific publications linked
to PubChem, 29.940.379 patents linked to PubChem and 803
organizations that contribute data to PubChem. DrugBank is a
reliable database containing drug information such as drug
targets, drug enzymes, drug interactions and drug carriers.
PubChem is a database for drug structures. For similarity ana-
lysis, lung cancer drugs, FDA-approved drugs and drugs which
were previously used in the treatment of Sars-Cov and Mers-
Cov disease and currently used in clinical trials for Sars-Cov-2
were used. Table 1 shows information on the compound num-
bers of the drugs used.

Drug repositioning, a strategy of this study, can be con-
sidered as a valid alternative provided that the drug has
been used frequently clinically. In particular, a remarkable
number of drugs reconsidered for the treatment of COVID-19
are being used in cancer treatment. This is because the
infected cells are forced to increase nucleic acid, protein and
lipid synthesis and increase their energy metabolism in order

to adapt to the ‘viral program’. The same features are also
seen in cancer cells. This makes it possible that drugs that
interfere with specific cancer cell pathways may also be
effective at defeating viral replication. COVID-19 can affect
many organs such as the brain, kidney, liver, especially the
lungs. The most affected organ involvement, which has an
effect on mortality, is the lung. For this reason, since the
treatment of COVID-19, which causes respiratory syndrome,
is provided with drugs used to treat the symptoms of lung
disease, drugs used in lung cancer were used in this study in
order to prepare a list of the repurposed drugs.

2.2. Proposed method

The fact that the treatments for COVID-19 disease are drugs
designed to treat the symptoms of lung disease justifies the
re-use of FDA-approved drugs. This study aims to determine
the similarities between FDA-approved drugs and COVID-19
and lung cancer drugs and help fight against the pandemic
as quickly as possible by using these drugs that are repur-
posed for the rapidly spreading COVID-19 virus with molecu-
lar affinity binding mode analysis. For this purpose, the
purposed method for determining repurposed drug candi-
dates is shown in Figure 1.

The proposed method consists of two stages.
In the first stage, drug-drug similarity analysis was per-

formed. For this process, drugs used in the treatment of
COVID-19, FDA-approved drugs and drugs used in lung can-
cer were used. Bioinformatics analyses were performed to
make a list of repurposed drug candidates. Since there is lim-
ited information about COVID-19, we focused our studies on
similar pathogens and compared FDA-approved drugs with
drugs used in the treatment of COVID-19, as shown in Figure
1, and made a list of similar reusable drugs. We then calcu-
lated the extended connectivity fingerprints for each drug
compound using the Jaccard similarity coefficient. We calcu-
lated all binary chemical similarities using Tanimoto similar-
ity, which has been proven to be a suitable choice for
fingerprint-based similarity calculations. The drugs obtained
were compared with the drugs used in lung cancer and
analyzed by the Atom pair similarity method. Thus, a list of
similar drugs used in both lung cancer and treatment of
COVID-19 and approved by the FDA was obtained. This list
of similar drugs was used in the next step.

In the second stage, Drug-protein Affinity analysis was
performed to calculate the binding mode and affinity of
drugs obtained from drug-drug similarity analysis. At this
stage, the drug list obtained in the first stage and the Davis
dataset specified in Table 1 were used. The Davis dataset
includes the target-protein sequence of the drugs. Other
methods, such as matrix factorization methods used for simi-
lar matrix completion problems, need to be retrained each
time a new drug or target is added to a dataset. To over-
come this problem, the GNN-based model was used. The
type of GNN used is inductive in nature. This means that it
can be used to make predictions about targets and com-
pounds not seen during training, without repeating the train-
ing process. Specifically, a drug is modeled as a graph of
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atoms acting as a node in a larger graph of residues-drug
complex. The resulting model is a meaningful deeply nested
graph neural network. Trainings are conducted under differ-
ent settings to evaluate scenarios such as new drugs or tar-
gets. The Dissociation constant (KD) parameter was used to
calculate the Affinity value. As indicated in the flowchart of
the proposed method, the combined method for drug-drug
affinity (Atom pair, Tanimoto) and drug-target protein inter-
action (GNN) predicts the binding affinity of samples
(ligands) with a particular molecular target.

2.3. Drug-drug similarity analysis

Clinical drug-drug similarity, which is associated with chem-
ical similarity and drug similarity based on the literature, has
many potential applications in evaluating drug therapy simi-
larity and patient similarity. Chemical structures often

represent features by inferring molecular fingerprints where
structural features are converted into bits in a bit vector or
numbers in a count vector. This representation enables to
efficiently examine and compare of calculation of chemical
structures. By using such fingerprints, the similarity between
two molecules is extracted. The molecular fingerprint struc-
ture is shown in Figure 2.

A bit position is associated with a precisely predefined
feature. ‘1’ refers to the presence of a feature in the mol-
ecule and ‘0’ refers to the absence of a feature in the mol-
ecule. If drug-drug interaction, one of the most critical issues
in drug development and health, is set to zero, this suggests
that there is no evidence of their interactions yet. Hence,
they can interact with each other.

J di, djð Þ ¼ di \ djj j
di [ djj j (1)

dj di, djð Þ ¼ 1� J di, djð Þ (2)

In the study, the drug-drug distance was measured using
the Jaccard similarity coefficient. This similarity coefficient
performed in a significant drug-diagnosis relationship. To do
this, the values were converted to binary bits and significant
inputs were set to 1 and non-significant inputs to 0. The
Jaccard similarity coefficient, which can be calculated as the
valued bit rate of both drugs, can be calculated as the rate
of bits with both drugs having a value of 1 in the same diag-
nosis code among drugs where at least one drug is 1, as
specified in Equation 1. In this study, the drug-drug distance
was calculated as specified in Equation 2.

2.3.1. Tanimoto similarity analysis
The concept of fingerprint is a way of representing the struc-
ture and properties of molecules with a binary (0 and 1)
number system. This representation way was applied for
data scanning operations. Many fingerprint algorithms and
similarity analyses based on this algorithm are available. The
mathematical formula of Tanimoto (Rogers & Tanimoto,

Table 1. Drug related public databases.

Databases Drug properties URL The number of compounds

Lung Cancer Drugs Molecular structure https://go.drugbank.com/ https://pubchem.ncbi.nlm.nih.gov/ 401
FDA Approved Molecular structure https://go.drugbank.com/ https://pubchem.ncbi.nlm.nih.gov/ 294 662
Sars-Cov-2 Mpro Molecular structure https://go.drugbank.com/ 101
Davis dataset Molecular structure, Target https://go.drugbank.com/ 20 000

Figure 1. Block diagram of the proposed approach to identifying repurposed drug candidates.

Figure 2. Molecular fingerprint structure.
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1960), which is the most widely used similarity algorithm, is
as shown in Equation 3.

Tan i Vi, Vjð Þ ¼ Vi:VjP
b Vib þ

P
b jib � Vi:Vj

(3)

where Vi represents molecule A and Vj represents molecule
B. The function here is a random number generator and
applies to each property of a molecule, such as the existing
bond and molecular structure types. Figure 3 shows the
structure of the Tanimoto algorithm.

Figure 3 shows how the similarities of the two molecules
can be assessed by creating molecular fingerprints. Each mol-
ecule has a hash function and then a fingerprint is generated
according to the properties. The fingerprint generator in
Figure 3 looks at a certain radius of bond distance and prop-
erties within that distance.

2.3.2. Atom pair similarity analysis
Representation of molecular (chemical) structures as sequen-
ces of bits (1’s and 0’s) is made with molecular fingerprints.
The basic logic is to capture the structure information of a
graph molecule and then encode it in a bit sequence to be
used in assessment stage its similarity with a pair of com-
pounds. The critical advantage of this process is that the
storage of such a representation is very different. Comparing
two molecular graphs proceeds rapidly compared to bit
comparison, reducing time-consuming. We decided to use
the best-performing Atomic Pair (AP) fingerprint (Riniker &
Landrum, 2013) for coding of structural elements and it is
relatively easier to implement. An AP configuration formula
is as shown in Equation 4:

A ¼ s 1�
Xm
i¼1

siP
si
:
Dni
ni

� �" #
(4)

A is the activity relative to the standard drug, S is the similar-
ity between the drug and its analog, si is the pathway length
of the atom pair, Dni is the difference of the standard drug
from the analog of the i.heteroatom pair, and ni is the num-
ber of the i.heteroatom pair in the standard drug. The gen-
eral process is as outlined in Figure 4.

The process steps shown in Figure 4 are as follows. When
creating an atom pair fingerprint, the following steps are
performed for each pair of heavy atoms:

1. removing the given pair of atoms and the shortest path-
way between them;

2. coding of identifiers (atomic type and the number of
bonds for both atoms and their topological distance);

3. converting to bit strings;
4. combining the bit strings into a number;
5. hashing the number into the index field;
6. setting the corresponding position on the fingerprint as 1.

The primary rationale for this similarity is colored depend-
ing on how many of the bits set by the atom are present in
the fingerprint. Figure 4 shows the ‘weight’ of an atom being
normalized and the normalized weights then being used to
color the atoms in a topography-like map; green indicates a
positive difference (i.e. similarity or probability decreases
when bits are removed), pink indicates a negative difference,
and gray indicates no change. Visualization is shown for fin-
gerprint types of atom pairs.

Figure 3. The structure of Tanimoto Algorithm.

Figure 4. Fingerprint structure of Atom pair.
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2.4. Drug-protein a finite analysis

The binding of drugs to proteins in blood, serum, or plasma
has an important role in determining the activity states in
the body, their distribution, the rate of excretion, and tox-
icity. With the development of GNN, recent studies on drug
discovery have focused on using direct molecular graphic
representation for both feature prediction and innovo
design. The GEFA model was used in this study for Drug-pro-
tein Affinity analysis, which is very important in rapid drug
reuse. Here, the drug is modeled as an atomic graph and
then acts as a node in the residual-drug graph in later
stages. The GEFA model used consists of four different train-
ing settings. Where both the protein and the drug are
known by the model, only the proteins are known by the
model, only the drug is known by the model, and finally
both the protein and the drug are not known by the model.
Drug-target affinity values were determined in the GEFA
model according to the experimental setting in which the
proteins are known, and the drug data set, which is obtained
from the results of drug-drug similarity analysis and predicts
its usability for Sars-Cov-2 treatment. Rational application of
measurements that quantify the molecular properties
required to obtain binding affinity accelerates the selection
of fragments and hits. Since the outputs of networks are
determined by the quantitative interaction of the many

molecules and interactions that compose them, equilibrium
constants are needed for the relationship between network
components. For binding equilibrium, under conditions
where one binding partner (here, protein, P) is too much
than the other (RNA), the rate equation for approaching
equilibrium is as follows:

kequil ¼ kon P½ � þ koff , (5)

where kon is the association rate constant, [P] is the protein
concentration or expression of excessive binding, koff is the
dissociation rate constant. Since equilibration in Equation 5
is slowest at the lowest protein concentrations, equilibration
times need to be established from the lower end of the con-
centration range. In practice, it is helpful to think of the limit-
ing case where the protein concentration approaches zero
([P]� 0) such that Equation 1 simplifies Equation 6.

kequil, limit ¼ koff (6)

The lower the Dissociation constant (KD), which expresses
the binding strength of drug targets, the longer the incuba-
tion time required to reach equilibrium (Jarmoskaite et al.,
2020).

KD ¼ koff
kon

(7)

The final measure of how well a compound binds a target
is called as the dissociation constant KD is a real-numbered
measurement used to represent the binding affinity between
a drug and a target. The lower the KD value, the greater the
binding. Therefore, this metric was used at this stage.

2.5. Graph Neural Network

In recent years, there has been an increase in the number of
deep learning applications. Some deep learning applications
are as follows: quantitative structure-activity relationships
(QSAR), virtual screening, drug repositioning and in silico
studies, prediction of pharmacokinetic properties (absorption,
distribution, metabolism and excretion- and toxicity).
Biological and chemical data have some features such as
complexity, uncertainty, diversity and high dimensionality.
The main advantage of deep learning is the complexity of

Figure 5. GNN structure.

Figure 6. Similarity analysis of Sars drugs and lung cancer drugs combined
using fingerprints with Tanimoto/Jaccard similarity method.
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the neural networks used and the flexible nature of their
architecture that allows for adaptations to specific problems.
Deep learning is effective in processing large chemical libra-
ries to provide predictive computational models. Therefore,

researchers use this methodology to find new chemothera-
peutic agents in drug discovery. Deep learning performs well
in predicting protein-ligand binding affinities. Deep learning
scoring algorithms are GNNs that spatially and/or chemically

Table 2. The similarity values of combined Sars drugs and lung cancer drugs.

Lung cancer molecule Combined Sars drugs Similarity rate

Erlotinib N-(3-Chlorophenyl)-6,7-dimethoxyquinazolin-4-amine hydrochloride 0.8013
Dasatinib PubChem CID: 24816490 0.5520
Vandetanib N-(3-Chlorophenyl)-6,7-dimethoxyquinazolin-4-amine hydrochloride 0.7342
Lapatinib PubChem CID: 666049 0.5468
Gemcitabine 20-Deoxycytidine hydrochloride 0.7420
Napabucasin 3-Acetyl-2-methylnaphtho[2,3-b]furan-4,9-dione 0.7822
Diflomotecan Camptothecin 0.8784
Bortezomib 2-Acetylamino-3-phenyl-N-[1-(pyrazine-2-carbonyl)-piperidin-4-yl]-propionamide 0.6132
Acetaminophen Phenacetin 0.7671
P-Toluenesulfonamide Mafenide acetate 0.8193
Pomalidomide Thalidomide 0.8180

Figure 7. 2D molecular structures of drugs obtained by atom pair analysis.

Figure 8. Atom pair similarity results.
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encode neighboring ligands and receptor atoms. Figure 5
shows the graph neural network structure (GNN) structure.

GNN aims to learn the representations of each atom.
While doing this process, the atom combines the information
from neighboring atoms encoded by the feature vector with
the information of the bonds encoded by the bond feature
vector. The state update of central atoms and the atom rep-
resentations learned after reading can be used to predict
molecular properties. Automatic learning of task-specific rep-
resentations using graph convolutions without the need for
fingerprints is an important feature of GNN. Computational
methods created for the prediction of molecular properties,
which is one of the main tasks in the field of drug discovery,
can accelerate the process of finding better drug candidates
quickly and cheaply. Let a graph be defined as G¼ (V, E).
Where V denotes nodes and E denotes edges. The molecule
can be thought of as a graph of nodes and edges. a e V is a
node with feature vector xa and ve Let bua e E be an edge
point from u to a with the feature vector xua. The adjacency
matrix, A, shows the connectivity of the nodes. Here this
matrix is binary if the graph is not weighted. It is defined as
a n� n matrix with Aua ¼ 1 if euv2E and Aua ¼ 0 if xua =2 E.
The symmetrically normalized neighborhood matrix is
defined as: Asym¼ D�1/2AD�1/2. Where D is the degree matrix
and is defined as: D2ZꞁVꞁxꞁVꞁ. Molecular graphs are gen-
erally undirected, weightless and often heterogeneous
(Wieder et al., 2020).

3. Experimental results and discussion

In this study, two different methods were used: the
Tanimoto algorithm and the Atom Pair algorithm. Affinity
binding mode analysis was performed for re-use of existing
useful drugs as COVID-19 therapeutics. In the first step of
the proposed method, the Tanimoto similarity results for
drug-drug similarity are shown in Figure 6.

Figure 6 shows the distribution of the drug molecules
closest to each other according to the affinity distance
according to the Tanimoto/Jaccard algorithm logic. Mers-Cov
shown in red shows drugs used for Sars-Cov treatment and
combined drugs from drugs approved in clinical trials and so
far to treat Sars-Cov-2. Green-colored ones indicate the drugs
used in lung cancer. Table 2 shows similarity values of
these drugs.

The drug–drug distance calculated as indicated in
Equation 2 shows how close the drug molecules are to each
other, as seen in Figure 6. Very close to each other, almost
similar drugs overlap. This similarity sheds light on the use of
drugs used in lung cancer for treatment of infectious disease
and COVID-19 disease that causes the acute respiratory syn-
drome. This is the first stage of the study and was used for
the main result in the second stage. Figure 7 shows struc-
tures of Atom Pair 2D smiles of some drugs selected among
sars drugs and drugs used in lung cancer combined with the
Tanimoto/Jaccard similarity method.

As shown in Figure 7, the molecular structures of drugs
obtained by Tanimoto/Jaccard similarity analysis are shown

in 2D Smiles using AP fingerprint analysis, which indicates
how the fragments should be encoded into strings.

The Atomic Pair fingerprints algorithm is also a demon-
stration of how fragments should be encoded into strings.
The basic idea at this stage is to consider the structural fea-
tures in molecular fingerprints (these are bond structure,
atomic type, etc.) and take the values of each atom of a par-
ticular fragment. These are then encoded into a finite num-
ber of bits (for example, three bits are sufficient for the
number of links) and combined to form the bit representa-
tion of the fragment index of the structure. The basic logic
of the AP fingerprint structure is as follows:

1. Remove all atom pair fragments
2. Encode parts to integers (indexes)
3. Create a bit sequence of length n
4. Add hashes of indexes to a field of the bit string
5. Turn on the corresponding bit for each of the

hash indexes,

In other words, the bits corresponding to the atom pairs
in the molecule are turned on and the remaining bits are
turned off. Figure 8 shows the atomic pair similarity results
of the drugs obtained.

Coloring is done in these structures as specified in Section
2.3.2. In this context, in the Atom pair similarity results in
Figure 8;

� Green indicates a positive difference (i.e. similarity or
probability decreases when bits are removed)

� Pink indicates a negative difference,
� Gray indicates no change.

Green indicates how well the combined Sars drugs shown
in Figure 8 overlap with the drugs used in lung cancer. In
other words, the green color seen here indicates how similar
the two drugs are. Similarity maps are an useful and easy-to-
understand strategy for atomically visualizing fingerprint
similarity between molecular structures. Atomic weights are
generated by comparing the similarity resulting from remov-
ing bits belonging to the corresponding atom with the
(unmodified) similarity of the previous fingerprint. Similarity
maps can be created for each fingerprint, allowing bits to be
traced back to a corresponding atom or substructure.

There are numerous protein kinases that can be blocked by
FDA-approved drugs to target the viral life cycle in the COVID-
19 outbreak and alleviate the symptoms of life-threatening
lung-damaging infection. These inhibitors offer an attractive
option for reuse, as they have been extensively studied for
safety and are more easily available for treatment of patients
and testing in clinical trials. Numerous kinases have been pro-
posed as important mediators of Mers-Cov, Sars-Cov and vari-
ous viral infections. It is estimated that these same proteins
play a role in mediating the infection that causes Sars-Cov-2.
Protein kinases, which make up 20%–30% of the drug discov-
ery plans of major pharmaceutical companies, have become a
very suitable target at this stage. There are many kinase inhibi-
tors currently approved with pharmacological effects that may
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be useful in improving the severe and potentially life-threaten-
ing symptoms of COVID-19, such as anti-inflammatory activity,
cytokine suppression, and antifibrotic activity. Ideally, a kinase

inhibitor with optimal pharmacokinetic properties could be
reused as a dual-functional therapeutic that can reduce infec-
tion through direct viral targeting and also provide clinical

Figure 9. The binding values of kinase inhibitors to the target protein obtained by GEFA analysis.
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benefit by suppressing disease symptoms. Kinase inhibitors
are types of proteins that are very commonly used as drug tar-
gets. Kinase inhibitors were used for drug-protein affinity ana-
lysis as they are drugs that bind and inhibit the activity of a
kinase. Figure 9 shows the target protein binding values of the
kinase inhibitors.

An ideal drug candidate would be a compound that has
high binding affinity (low KD) with the desired target, but low
binding affinity (high KD) with all other known biological tar-
gets. This minimizes the risk of the drug interacting with other
targets and causing unwanted side effects. We may see some
drugs emerge more than once, these would potentially be the
most promising treatments as they can serve as multi-targeted
inhibitors. What is promising is that many of the findings have
already been suggested or confirmed in the literature. This is
encouraging because it confirms our results.

In the proposed method, the listed drug smiles structures
obtained by stage1 were trained with kinase inhibitors in the
Davis dataset under various training settings. Here, target-pro-
tein analysis was performed with the kinase inhibitors in each
smiles davis dataset and the KD value specified in Section 2.4,
and the binding rate with all kinase inhibitors was obtained
separately for each drug. The kinase inhibitor with a better
binding rate than other inhibitors was selected. For example,
for Cediranib, the JAK1 inhibitor yielded a higher binding rate
than the others with a KD value of 5.0 among the kinase inhib-
itors. Similarly, Dasatinib achieved better binding to the ABL2
kinase inhibitor with a KD value of 9.7 compared to the other
inhibitors (see Figure 9). Kinase inhibitors approved for treat-
ing various malignancies have properties such as anti-inflam-
matory and cytokine inhibitory activity that can reduce the
likelihood of life-threatening conditions associated with lung
damage caused by respiratory virus infections. For example,
Osimertinib is a potent EGFR inhibitor. It has been reported
that Osimertinib is one of 24 FDA-approved drugs showing
in vitro activity against Sars-Cov-2. Lapatinib may also be rec-
ommended. According to this table, promising ones are used
in treatment of patients suffering from Lung disease and
Acute Myeloid Leukemia (AML). Among all results, the most
promising EGFR (Lapatinib), AAK1 (Erlotinib, Vandetanib,
Pazopanib), ABL2, and ABL1 (Dasatinib, Tozasertib), FLT3
(Linifanib), and JAK1 (Cediranib) can be used as an alternative
for treatment of COVID-19.

3.1. Discussion

In the context of drug development, reuse of existing drugs
for another disease may be faster than new drug discovery.

When existing drugs are approved for other diseases, they
can provide new treatments faster, but there are many fac-
tors to consider during reuse of approved drugs for a new
indication. Identifying potentially inhibited key protein tar-
gets may be a good option for a new therapeutic applica-
tion. However, the urgency of need and time during a
pandemic crisis can make it challenging to conduct well-con-
trolled studies with data that attribute efficacy to a drug.
Various kinase inhibitors that target virus-associated proteins
are under clinical investigation for COVID-19. Several vaccines
are available to fight against the COVID-19 pandemic, but
dealing with the pandemic is still challenging due to the
emergence of mutant strains of the virus as well as difficul-
ties in generating and distributing vaccines, and more. When
the drug targets and protein structures associated with the
disease of interest are known, it is possible to use structural
bioinformatics to screen available drugs against these known
targets using molecular docking. In this context, the toxicity
profiles of known preclinical, pharmacokinetic, pharmacody-
namic, and repurposed drugs can be an important solution
to find rapid treatment against COVID-19 disease. The affinity
of the Erlotinib drug, which we determined, was analyzed for
AKT1 and can be used as an antiviral drug in the treatment
of COVID-19. The most appropriate treatment for patients
with newly diagnosed acute myeloid leukemia (AML)
infected with severe acute respiratory syndrome Sars-Cov-2 is
unknown. It has been concluded that single-agent Gilteritinib
can be safely administered in patients applying due to de
novo FLT3-ITD positive AML and may cause remission.
Gilteritinib was considered to be a treatment option for
patients with FLT3 mutated AML and severe COVID-19,
where long-term chemotherapy-induced pancytopenia could
adversely affect outcomes (Wilson et al., 2020). We believe
that the drug Linifanib, whose affinity is obtained from drug-
target similarities, such as Gilteritinib, an inhibitor to FLT3,
may be effective in AML patients infected with COVID-19.

Long-term or permanent lung damage in the form of pul-
monary fibrosis, a process mediated by Epidermal Growth
Factor (EGFR), has been observed in patients recovering from
Sars-Cov and Mers-Cov infections. EGFR-targeting inhibitors
used by different viruses, including many respiratory viruses,
have been observed by gefitinib and erlotinib (Lupberger
et al., 2011). For example, Osimertinib is a potent EGFR
inhibitor and has been reported to be one of 24 FDA-
approved drugs that exhibit in vitro activity against Sars-Cov-
2. Another inhibitor, lapatinib, which targets EGFR, can be
used as an alternative for treatment of COVID-19. The kinase
inhibitors (erlotinib, lapatinib, vandetanib, pazopanib,

Table 3. Methods used in the literature for drug discovery.

Authors Simulated tissue/purpose of the study Used method Application

Stebbing et al. (2020) COVID-19: Combining antiviral and
anti-inflammatory treatments

Artificial Intelligence Methods Drug repurposing, protein affinity

Wang et al. (2020) Drug repurposing report generation Artificial Intelligence Literature search, report
Domingo-Fernandez et al. (2020) COVID-19 Knowledge Graph BIKMI, OrientDB, Python Django Drug repurposing, protein affinity,

host-pathogen interactions
Hsieh et al. (2020) Repurposable drugs by multiple

SARS-CoV-2 and drug interactions
Graph Neural Network (GNN) Drug repurposing, protein affinity

Zhou et al. (2020) Artificial intelligence in COVID-19
drug repurposing

Artificial Intelligence Drug repurposing
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cediranib, dasatinib, linifanib and tozasertib), obtained in the
study can be used as an alternative for the treatment of
COVID-19 as a combination of blocking agents such as ABL2,
ABL1, EGFR, AAK1, FLT3 and JAK1 (gefitinib, osimertinib,
fedratinib, baniticinib, imatinib, sunitinib and ponatinib) or
antiviral treatments (ribavirin, ritonavir-lopinavir and remdesi-
vir). Table 3 shows the methods recommended for the treat-
ment of COVID-19 in the literature.

Stebbing et al. (2020) is a review article focusing on a pro-
prietary AI algorithm. In this article, the authors were pub-
lished as a commentary in the Lancet Infectious Diseases
immediately before the onset of the pandemic. The authors
previously described how BenevolentAI’s proprietary
Knowledge Graph (KG) questioned by a set of algorithms
enabled the identification of a numb-associated kinase (NAK)
inhibitor (baricitinib) to suppress clathrin-mediated endocyto-
sis and thereby to prevent viral infection of cells. In this
study, they examined again the affinity and selectivity of all
approved drugs in their kg to identify those with both anti-
viral and anti-inflammatory properties, as the host inflamma-
tory response has become a major cause of lung injury and
then mortality for severe cases of COVID-19. The authors
gave these three candidates: baricitinib, fedratinib and
ruxolitinib.

The study of Wang et al. (2020) is the only article that
mentions the creation of a report for drug reuse. The content
of such an AI-generated drug report, mentioned in Wang et
al. (2020) of their study, is useful for understanding why a
drug reuse candidate was selected. The authors note that
reports are reviewed by clinicians and medical students,
however a more quantitative assessment can be made at a
later stage. It is also unique in using shape images from pub-
lications to enrich article KG. The authors used the KGs to
generate the drug reuse report. Such a report for a particular
drug consisted of 11 typical questions they identified:

Domingo-Fernandez et al. (2020) created a KG that is a
cause-and-effect knowledge model of the pathophysiology
of COVID-19 and can then be applied for drug reuse. The
authors noted that although KGs were originally developed
to describe interactions between entities, new machine
learning techniques can produce hidden, low-dimensional
representations of KG that can then be used for downstream
tasks such as clustering or classification. For the creation of
the KG, scientific literature on COVID-19 was taken from
open-access and freely available journals: additional COVID-
19-specific reviews such as PubMed, Europe PMC and
LitCovid. This corpus was then filtered based on available
knowledge of potential drug targets for COVID-19, the bio-
logical pathways by which the virus interferes with replica-
tion in the human host, and information about various viral
proteins along with their functions.

Hsieh et al. (2020) aimed to discover reusable drugs by
integrating multiple Sars-Cov-2 and drug interactions, deep
graph neural networks, and in vitro/population-based valida-
tions. They collected all available drugs (n¼ 3635) involved
in COVID-19 treatment through the Comparative
Toxicogenomics database. Candidate drugs can be divided
into two broad categories: those that can directly target the

virus replication cycle and those that rely on immunotherapy
approaches aimed at enhancing innate antiviral immune
responses or attenuating damage caused by dysregulated
inflammatory responses. They created a Sars-Cov-2 KG based
on interactions between virus baits, host genes, drugs, and
phenotypes. The graph had four types of nodes and five
types of edges based on interactions. They used a GNN
approach to obtain a representation of the candidate drug
based on biological interactions. To validate their
approaches, they explained that in traditional network ana-
lysis, network proximity was defined by direct interactions,
thus less attention was paid to a node’s local role (e.g.
neighbors, edge directions) and global location (e.g. overall
topology or structure).

Zhou et al. (2020) conducted a review article for the
Lancet Digital Health. In their review, they provided guide-
lines on how to use various forms of AI to accelerate drug
reuse, with COVID-19 as an example. With regard to KGs
in particular, they stated that KGs can be reduced to low-
dimensional feature vectors and their similarity can be meas-
ured using feature vectors of drugs and diseases, thus effect-
ive drugs can be identified for a particular disease. One
challenge they identified for the chart embedding method is
scalability. The number of assets in a medical KG can be as
many as several million. They mentioned that several systems
were specifically designed to learn representations from
large-scale graphs.

In this study, we performed bioinformatics analyses to
make a list of repurposed drug candidates again by complet-
ing the limited information known about the COVID-19 virus,
which has caused millions of deaths around the world, with
data on associated viruses. Since there is limited information
about COVID-19, we focused our studies on similar patho-
gens and prepared a list of similar reusable drugs by com-
paring drugs used in lung cancer with FDA-approved drugs
used in the treatment of COVID-19. Graph neural network-
based GEFA model was used to calculate the affinity of these
drugs. Predicting the interaction between a compound and a
target is crucial for rapid drug reuse. Deep learning has been
successfully applied to the drug target affinity (DTA) prob-
lem. However, previous deep learning-based methods over-
looked modeling direct interactions between drug and
protein residues. This will lead to incorrect learning of target
representation, which may change due to drug binding
effects. Also, previous DTA methods neglect the use of pro-
teins outside of DTA datasets. These methods learn protein
representation based on a small number of protein sequen-
ces only in DTA datasets. GEFA was chosen in this study as it
is a graph-in-graph neural network with attention mechan-
ism to examine changes in target representation due to
binding effects. Thus, the use of existing approved drugs can
provide a faster treatment compared to the long time
required for the discovery of a new drug in the fight against
the pandemic. The use of repurposed drugs for the rapidly
spreading COVID-19 virus can make it easier to help fight
the pandemic as quickly as possible during the pandemic cri-
sis, where need and urgency of time are important.
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4. Conclusion

It takes an average of ten years and two billion dollars to
develop a single FDA-approved drug. However, it is too slow
to react to sudden global threats like the COVID-19 pan-
demic. COVID-19 vaccines are already distributed, but global
vaccine distribution cannot be realized within a day. And in
spite of all the challenges of vaccine delivery, hundreds of
thousands of people worldwide have still suffered from the
Sars-Cov-2 virus. An alternative to discover a new drug is to
reuse the drug. It is to find drugs that have passed clinical
trials for the treatment of other diseases and can be effective
in the treatment of the new one. In this way, it remains only
to test the drug’s ability to treat a new disease, as the safety
risk is already known. In this article, the GNN-based GEFA
model was used to find new potential drug candidates that
have already undergone clinical trials for the treatment of
Sars-Cov-2. In this context, since there is limited information
about COVID-19, we focused our studies on similar patho-
gens and prepared a list of similar reusable drugs by com-
paring drugs used in lung cancer and FDA-approved drugs
used in the treatment of COVID-19 with similarity algorithms
such as Tanimoto and Atom Pair. In order to calculate the
binding rate of these drugs, the graph neural network-based
GEFA model was applied and the results were evaluated. The
drug datasets used in the study were taken from Pubchem
and Drugbank. Clinical trials are ongoing for Sars-Cov-2
through various kinase inhibitors that target the main virus-
associated proteins besides the proteins involved in the
development of Sars-Cov-2- associated symptoms (including
pneumonia, fibrosis and inflammation).

Kinase inhibitors (erlotinib, lapatinib, vandetanib, pazopa-
nib, cediranib, dasatinib, linifanib and tozasertib), obtained in
the study can be used as an alternative for the treatment of
COVID-19 as a combination of blocking agents such as ABL2,
ABL1, EGFR, AAK1, FLT3 and JAK1 (gefitinib, osimertinib,
fedratinib, baniticinib, imatinib, sunitinib and ponatinib) or
antiviral treatments (ribavirin, ritonavir-lopinavir and remdesi-
vir). In conclusion, small molecules identified as and target-
ing major viral factors that could represent a potential target
for future Sars-Cov-2 treatment may provide a basis and
research for the design of new classes of treatments against
Sars-Cov-2 infection. Through these results, we aimed to
shed light on future treatments.
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